首页 | 本学科首页   官方微博 | 高级检索  
     


Comparison of the efficiency and the specificity of DNA-bound and free cationic porphyrin in photodynamic virus inactivation
Authors:Zupán Kristóf  Egyeki Marianna  Tóth Katalin  Fekete Andrea  Herényi Levente  Módos Károly  Csík Gabriella
Affiliation:Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary. zkristof@freemail.hu
Abstract:The risk of transmitting infections by blood transfusion has been substantially reduced. However, alternative methods for inactivation of pathogens in blood and its components are needed. Application of photoactivated cationic porphyrins can offer an approach to remove non-enveloped viruses from aqueous media. Here we tested the virus inactivation capability of meso-Tetrakis(4-N-methylpyridyl)porphyrin (TMPyP) and meso-Tri-(4-N-methylpyridyl)monophenylporphyrin (TMPyMPP) in the dark and upon irradiation. T7 bacteriophage, as a surrogate on non-enveloped viruses was selected as a test system. TMPyP and TMPyMPP reduce the viability of T7 phage already in the dark, which can be explained by their selective binding to nucleic acid. Both compounds proved to be efficient photosensitizers of virus inactivation. The binding of porphyrin to phage DNA was not a prerequisite of phage photosensitization, moreover, photoinactivation was more efficiently induced by free than by DNA bound porphyrin. As optical melting studies and agarose gel electrophoresis of T7 nucleoprotein revealed, photoreactions of TMPyP and TMPyMPP affect the structural integrity of DNA and also of viral proteins, despite their selective DNA binding.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号