首页 | 本学科首页   官方微博 | 高级检索  
     


Roles of noise in single and coupled multiple genetic oscillators
Authors:Yoda Mitsumasa  Ushikubo Tomohiro  Inoue Wataru  Sasai Masaki
Affiliation:Department of Computational Science and Engineering, Nagoya University, Nagoya 464-8603, Japan.
Abstract:The noisy fluctuation of chemical reactions should profoundly affect the oscillatory dynamics of gene circuit. In this paper a prototypical genetic oscillator, repressilator, is numerically simulated to analyze effects of noise on oscillatory dynamics. The oscillation is coherent when the protein number and the rate of the DNA state alteration are within appropriate ranges, showing the phenomenon of coherence resonance. Stochastic fluctuation not only disturbs the coherent oscillation in a chaotic way but also destabilizes the stationary state to make the oscillation relatively stable. Bursting in translation, which is a source of intense stochastic fluctuation in protein numbers, suppresses the destructive effects of the finite leakage rate of protein production and thus plays a constructive role for the persistent oscillation. When multiple repressilators are coupled to each other, the cooperative interactions among repressilators enhance the coherence in oscillation but the dephasing fluctuation among multiple repressilators induces the amplitude fluctuation in the collective oscillation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号