首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of polydispersity and amine–epoxide ratio on molecular mobility in epoxy networks
Authors:G Iannacchione  E Von Meerwall
Abstract:Using nuclear magnetic resonance (NMR) T2 relaxation and pulsed-gradient spin-echo diffusion experiments at 175.5°C, molecular motions of the sole and gel of several epoxies of the type diglycidyl ether of bisphenol-A (DGEBA; Shell Epon 1007F and 1009F) cured with 4,4′-diaminodiphenyl sulfone (DDS) have been studies as a function of curative content. It was found that the fraction of protons associated with the shorter T2 component cannot be identified as the gel fraction until the substantial bimodal polymer polydispersity is accounted for in the spin relaxation model. The gel fraction and both relaxation rates have maxima near curing stoichiometry, and fall off more rapidly on the curative-poor side. The diffusion spectrum of the sol fraction was consistent with a light species (Epon 828 remnants) plus a polydisperse (M?w/M?n ?2) heavier species, in agreement with resin and sol gel permeation chromatography (GPC) results. Numerical simulations also show that polymer polydispersity is likely to affect the interpretation of T2 relaxation found in the literature.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号