Abstract: | The positive and negative FAB mass spectra of a series of alkoxy- and chloro-silanes Xm(CH3)3-mSi(CH2)nR [m = 1 or 3, n = 3, 10 or 17, X = Cl or OMe or OEt, R = Me, NH2, glycidoxy, COOMe, NHCO(CH2)7COOMe or NHCO(CH2)10CH2OAc] were recorded in NBA and NPOE matrices. The chlorosilanes underwent rapid hydrolysis into silanols which condense to form siloxanes, the process being complete in NBA and partial in NPOE, yielding siloxane-based fragment ions in the positive spectra and silyloxyanions in the negative spectra. The alkoxysilanes were more resistant to hydrolysis, affording abundant [MH – HX]+ ions (X = OMe or OEt) in their positive FAB spectra and moderate to high intensity [M – H]? ions in the negative mode, the latter undergoing characteristic sequential loss of C2H4, EtOH and C2H4. Significant variations were observed in the positive spectra of all the silanes with change of matrix. |