首页 | 本学科首页   官方微博 | 高级检索  
     


The viscoplastic behavior of hastelloy-X single crystal
Affiliation:1. Thin Film Coating Dept. Central Res. Institute, Mitsubishi Materials Corp., 1002-14 Mukohyama, Naka-shi, Ibaraki 311-0182, Japan;2. Dept. Mechanical Eng. and Sci., Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan;3. Emeritus Professor, Tokyo Institute of Technology, 2-16-1-402, Kakemama, Ichikawa, Chiba 272-0142, Japan;1. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China;2. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract:A viscoplastic constitutive model for Hastelloy-X single crystal material is developed based on crystallographic slip theory. The constitutive model was constructed for use in a viscoplastic self-consistent model for isotropic Hastelloy-X polycrystalline material, which has been described in a recent publication. It is found that, by using the slip geometry known from the metallurgical literature, the anisotropic response can be accurately predicted. The model was verified by using tension and torsion data taken at 982°C (1800°F). The constitutive model used on each slip system is a simple unified visoplastic power law model in which weak latent interaction effects are taken into account. The drag stress evolution equations for the octahedral system are written in a hardening/recovery format in which both hardening and recovery depend on separate latent interaction effects between the octahedral crystallographic slip systems. The strain rate behavior of the single crystal material is well correlated by the constitutive model in uniaxial and torsion tests, but it is necessary to include latent information effects between the octahedral slip systems in order to obtain the best possible representation of biaxial cyclic strain rate behavior. Finally, it was observed that the single crystal exhibited dynamic strain aging at 871°C (1600°F). Similar dynamic strain aging occurs at 649°C (1200°F) in the polycrystalline version of the alloy.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号