首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ultralow Voltage High-Performance Bioartificial Muscles Based on Ionically Crosslinked Polypyrrole-Coated Functional Carboxylated Bacterial Cellulose for Soft Robots
Authors:Fan Wang  Qinchuan Li  Jong-Oh Park  Shaohui Zheng  Eunpyo Choi
Institution:1. Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou, 310018 China;2. Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju, 61011 Republic of Korea;3. School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006 China
Abstract:The development of ultralow voltage high-performance bioartificial muscles with large bending strain, fast response time, and excellent actuation durability is highly desirable for promising applications such as soft robotics, active biomedical devices, flexible haptic displays, and wearable electronics. Herein, a novel high-performance low-priced bioartificial muscle based on functional carboxylated bacterial cellulose (FCBC) and polypyrrole (PPy) nanoparticles is reported, exhibiting a large bending strain of 0.93%, long actuated bending durability (96% retention for 5 h) under an ultralow harmonic input of 0.5 V, broad frequency bandwidth up to 10 Hz, fast response time (≈4 s) in DC responses, high energy density (6.81 KJ m−3), and high power density (5.11 KW m−3), all of which mainly stem from its high surface area and porosity, large specific capacitance, tuned mechanical properties, and strong ionic interactions of cations and anions in ionic liquid with FCBC and PPy nanoparticles. More importantly, bioinspired applications such as the grapple robot, bionic medical stent, bionic flower, and wings-vibrating have been realized. These successful demonstrations offer a viable means for developing high-performance bioartificial muscles for next-generation soft bioelectronics including bioinspired robotics, biomedical microdevices, and wearable electronics.
Keywords:bioartificial muscles  carboxylated bacterial cellulose  ionic actuators  soft robotics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号