首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Towards the automation of micron-sized particle handling by use of acoustic manipulation assisted by microfluidics
Authors:Oberti Stefano  Neild Adrian  Möller Dirk  Dual Jürg
Institution:Institute of Mechanical Systems, Department of Mechanical and Process Engineering, IMES, ETH Zurich, CH-8092 Zurich, Switzerland. stefano.oberti@imes.mavt.ethz.ch
Abstract:The use of acoustic radiation forces for the manipulation and positioning of micrometer sized particles has shown to be a promising approach. Resonant excitation of a system containing a particle laden fluid filled cavity, can (depending on the mode excited) result in positioning of the particles in parallel lines (1-D) or distinct clumps in a grid formation (2-D) due to the high amplitude standing pressure fields that arise in the fluid. In a broader context, the alignment of particles using acoustic forces can be used to assist manipulation processes which utilise an external mechanical tool, for instance a microgripper. In such a system, particles can be removed sequentially from a line formed by acoustic forces within a microfluidic channel, hence allowing a degree of automation. In order to fully automate the gripping process, the particles must be confined to a repeatable and accurate location in two dimensions (assuming that in the third dimension they sit on the lower surface of the channel). Only in this way it is possible to remove subsequent particles by simply bringing the gripper to a known location and activating its fingers. This combined use of acoustic forces and mechanical gripping requires that one extremity of the channel is open. However, the presence of the liquid-air interface which occurs at this opening, causes the standing pressure field to decay to zero towards the opening. In a volume of liquid in proximity to the interface positioning of particles by acoustic forces is therefore no longer possible. In addition, the longitudinal gradient of the field can cause a drift of particles towards the longitudinal center of the channel at some frequencies, undesirably moving them further away from the interface, and so further from the gripper. As a solution the use of microfluidic flow induced drag forces in addition to the acoustic force potential has been investigated.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号