首页 | 本学科首页   官方微博 | 高级检索  
     检索      


TG/DSC/FTIR characterization of linear geranyl diesters
Authors:Marta Worzakowska  Piotr Ścigalski
Institution:1. Department of Polymer Chemistry, Maria Curie-Sk?odowska University, Gliniana 33 Street, 20-614, Lublin, Poland
Abstract:The synthesis, thermal behavior, and characterization of the decomposition products of linear geranyl diesters: digeranyl succinate, digeranyl glutarate, digeranyl adipinate, and digeranyl sebacinate were presented. The linear geranyl diesters were prepared in direct esterification process of a molar stoichiometric ratio of geraniol and suitable acidic reagent in solvent-free medium at 130 °C using butylstannoic acid as a catalyst. Their structure was confirmed based on FTIR, 1H- and 13C-NMR spectra. It was proved that the use of tin catalyst allowed decreasing the reaction time and increasing the final conversion of substrates when compared to non-catalyzed process. It considerably simplifies the processing by reduction of the preparation cost and thus this new method of synthesis of aroma diesters may be attractive for practical applications. The thermal behavior of prepared compounds was studied by TG/DSC/FTIR coupled method. TG analysis showed that diesters are thermally stable up to temperatures above 200 °C. The DTG curves confirmed that these decomposition run as a single-stage process. The T max1 were in the range of 294.5–313.8 °C depending on the aliphatic chain length (–CH2–)n in the structure of aroma diesters, which was in accordance with DSC data. The analysis of the gases evolved during heating of diesters in inert atmosphere indicated on the asymmetrical disrupt of their bonds. The cleavage of ester bond and O-geranyl bond was expected. It resulted in production of the mixture of derivatives of geraniol (acyclic and alicyclic monoterpene hydrocarbons) like myrcene, ocimene, or limonene as main decomposition products. In addition, the formation of anhydride, lactone, or ketone functionalities among the degradation products clearly confirmed the proposed degradation path of studied diesters.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号