首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient L-stable method for parabolic problems with application to pricing American options under stochastic volatility
Authors:M. Yousuf
Affiliation:Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
Abstract:Efficient L-stable numerical method for semilinear parabolic problems with nonsmooth initial data is proposed and implemented to solve Heston’s stochastic volatility model based PDE for pricing American options under stochastic volatility. The proposed new method is also used to solve two asset American options pricing problem. Cox and Matthews [S.M. Cox, P.C. Matthews, Exponential time differencing for stiff systems, Journal of Computational Physics 176 (2002) 430-455] developed a class of exponential time differencing Runge-Kutta schemes (ETDRK) for nonlinear parabolic problems. Kassam and Trefethen [A.K. Kassam, L.N. Trefethen, Fourth-order time stepping for stiff PDEs, SIAM Journal on Scientific Computing 26 (4) (2005) 1214-1233] showed that while computing certain functions involved in the Cox-Matthews schemes, severe cancelation errors can occur which affect the accuracy and stability of the schemes. Kassam and Trefethen proposed complex contour integration technique to implement these schemes in a way that avoids these cancelation errors. But this approach creates new difficulties in choosing and evaluating the contour integrals for larger problems. We modify the ETDRK schemes using positivity preserving Padé approximations of the matrix exponential functions and construct computationally efficient parallel version using splitting technique. As a result of this approach it is required only to solve several backward Euler linear problems in serial or parallel.
Keywords:L-stable   Padé   approximations   Parabolic problem   American options   Heston&rsquo  s stochastic volatility model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号