首页 | 本学科首页   官方微博 | 高级检索  
     

Slater绝缘体的磁性和能带计算研究
引用本文:缪子隆,提磊,宋紫菀,李斌,赵志刚,施智祥. Slater绝缘体的磁性和能带计算研究[J]. 低温物理学报, 2019, 41(1): 62-68
作者姓名:缪子隆  提磊  宋紫菀  李斌  赵志刚  施智祥
作者单位:南京邮电大学电子与光学工程学院,南京,210023;南京邮电大学理学院,南京210023;江苏省新能源技术工程实验室,南京210023;南京农业大学工学院,南京,210031;东南大学物理学院,南京,211189
基金项目:国家自然科学基金;江苏省自然科学基金青年项目;国家自然科学基金;资助的课题
摘    要:Slater相变是一种由于反铁磁序形成而导致的金属—绝缘体相变.本文采用第一性原理密度泛函计算方法研究了两种Slater绝缘体材料NaOsO_3和Cd_2Os_2O_7的电子结构,进而研究了反铁磁序排列、自旋轨道耦合和电子关联对其电子结构以及相变性质的影响.研究结果表明,非磁相的NaOsO_3具有金属性;而G型线性反铁磁结构是驱动NaOsO_3发生Slater相变的磁基态.此外,研究结果表明,非磁相的焦绿石Cd_2Os_2O_7的能带结构在费米能级处是连续的,表现为金属性;并且带有磁阻挫的Cd_2Os_2O_7发生Slater相变的条件十分苛刻,只有在自旋轨道耦合和1.8 eV电子关联的共同作用下一种全进—全出非线性反铁磁结构才能使其发生Slater相变.说明全进—全出非线性反铁磁结构是使Cd_2Os_2O_7发生Slater相变的磁基态,而自旋轨道耦合和1.8 eV的电子关联在消除磁阻挫上起到了关键作用.

关 键 词:能带结构  反铁磁序  第一性原理计算

Calculation Study on Magnetic and Band Structures in Slater Insulators
MIAO Zilong,TI Lei,SONG Ziwan,LI Bin,ZHAo Zhigang and SHI Zhixiang. Calculation Study on Magnetic and Band Structures in Slater Insulators[J]. Chinese Journal of Low Temperature Physics, 2019, 41(1): 62-68
Authors:MIAO Zilong  TI Lei  SONG Ziwan  LI Bin  ZHAo Zhigang  SHI Zhixiang
Affiliation:College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China, 210023,College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China, 210023,College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China, 210023,School of science, Nanjing University of posts and telecommunications, Nanjing, China 210023; New Energy Technology of Jiangsu Province, Nanjing China, 210031,College of engineering, Nanjing Agricultural University, Nanjing, 210031 and Department of Physics, Southeast University, Nanjing 211189
Abstract:The Slater transition is one of the metal-insulator transition that occurs due to the formation of an antiferromagnetic order. In this dissertation, We using ab initio package to study the electronic structures of two Slater insulator materials, NaOsO3 and Cd2Os2O7, including electron energy bands and density of states by using the first-principle density functional calculation method. Furthermore, the effects of antiferromagnetic order, spin-orbit coupling(SOC) and electron correlation on the electronic structures and transition properties were investigated. We find that the electronic structures of NaOsO3 in the non-magnetic phase is continuous and showing the behavior of metal; while the G-type antiferromagnetic structure changes the electronic structures of NaOsO3, resulting in Slater transition. We find that the electronic structures of Cd2Os2O7 in the non-magnetic phase is continuous, and showing the behavior of metal. The conditions for the occurrence of Slater transition in frustrated Cd2Os2O7 very severe. Only the noncollinear all-in-all-out antiferromagnetic structure with the spin-order interactions and 1.8 eV electron correlation can causes the Slater transition. It shows that the noncollinear all-in-all-out antiferromagnetic structure is the magnetic ground state of Slater transition, and the spin-orbit coupling and the 1.8 eV electron correlation play a key role in eliminating the magnetic frustration
Keywords:band-structure   antiferromagnetic order   first-principles calculation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《低温物理学报》浏览原始摘要信息
点击此处可从《低温物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号