首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Tuning the optical properties of fluorinated indolylfulgimides
Authors:Wolak Mason A  Thomas Craig J  Gillespie Nathan B  Birge Robert R  Lees Watson J
Institution:Department of Chemistry and W. M. Keck Center for Molecular Electronics, Syracuse University, New York 13244, USA.
Abstract:Photochromic fluorinated indolylfulgides have been identified as potential candidates for a wide range of applications including optical switches, photoregulators of biological processes, and optical memory media. In humid environments or biological systems, hydrolytic stability is essential. In an effort to improve hydrolytic stability, a series of indolylfulgimides has been synthesized from a parent trifluoromethyl-substituted indolylfulgide. The nitrogen of the succinimide moiety is linked to either a dimethyl amino or one of seven substituted phenyl groups. The phenyl groups feature substituents with increasing electron-withdrawing ability. The spectral characteristics of each compound have been examined, revealing that the wavelength absorption maxima of each form increases with increasing electron-withdrawing ability of the substituted N-phenyl ring. The quantum yields of the photoreactions have been determined with the N-(phenyl)fulgimide showing a ring closure value of nearly 0.30 in toluene. In addition, the hydrolytic, thermal, and photochemical stabilities of each compound have been measured. The fulgimides exhibit at least a 200-fold enhancement of hydrolytic stability for the Z-form and over a 1000-fold enhancement for the C-form in comparison to the same form of the parent fulgide. The N-(2,3,5,6-tetrafluoro-4-trifluoromethylphenyl)fulgimide can undergo up to 3000 photochemical cycles (coloration followed by bleaching) before losing 20% of its initial absorbance at photostationary state.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号