首页 | 本学科首页   官方微博 | 高级检索  
     


Zwitterionic structures of selenocysteine-containing dipeptides and their interactions with Cu(II) ions
Authors:Gunajyoti Das  Shilpi Mandal
Affiliation:1.Department of Chemistry,North Eastern Hill University,Shillong,India
Abstract:The molecular structures of a series of selenocysteine-containing dipeptides in their zwitterionic forms were studied using the B3LYP/6-311++G(d,p) level in the aqueous phase. The B3LYP and BH and HLYP functionals in combination with 6-311++G(d,p) and LANL2DZ basis sets were used to investigate the effects of metal coordination on the structural and molecular properties of the dipeptides by complexing them with bivalent copper ions. The results from this DFT study provide valuable insights into the interaction enthalpies (metal ion-binding affinities) and free energies, the influence of the C-terminal moiety on the backbone structural features, the existence of various types of intramolecular H-bond interactions, harmonic vibrational frequencies, along with various other electronic properties pertaining to the zwitterions of the dipeptide molecules as well as their metallic complexes. Metal coordination via the carboxylate groups tends to enhance the planarity of the amide planes. The participations of the N- and C-terminal side-chain moieties in metal-binding markedly enhance the thermodynamic stability of the metalated dipeptides. The theoretical λmaxvalues, calculated using the TD/DFT level for all the systems, well represent the occurrence of d-d transitions in the Cu-dipeptide complexes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号