首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Demonstration of a coupled floating offshore wind turbine analysis with high-fidelity methods
Institution:1. College of Engineering, Peking University, Beijing 100871, China;2. Institute of Ocean Research, Peking University, Beijing 100871, China;3. State Key Laboratory for Turbulence and Complex systems, Peking University, Beijing 100871, China;4. Institute of Systems Engineering, China Academy of Engineering Physics (CAEP), Mianyang 621900, China;1. Environmental Physics Laboratory, Universidade de Vigo, Campus As Lagoas s/n, 32004 Ourense, Spain;2. Flanders Hydraulic Research, Berchemlei 115, 2140 Antwerp, Belgium;3. Department of Civil Engineering, Ghent University, Technologiepark 904, 9052 Ghent, Belgium;1. The State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China;2. School of Science and Engineering, University of Dundee, DD1 4HN, United Kingdom
Abstract:This paper presents results of numerical computations for floating off-shore wind turbines using, as an example, a machine of 10-MW rated power. The aerodynamic loads on the rotor are computed using the Helicopter Multi-Block flow solver developed at the University of Liverpool. The method solves the Navier–Stokes equations in integral form using the arbitrary Lagrangian–Eulerian formulation for time-dependent domains with moving boundaries. Hydrodynamic loads on the support platform are computed using the Smoothed Particle Hydrodynamics method, which is mesh-free and represents the water and floating structures by a set of discrete elements, referred to as particles. The motion of the floating offshore wind turbine is computed using a Multi-Body Dynamic Model of rigid bodies and frictionless joints. Mooring cables are modelled as a set of springs and dampers. All solvers were validated separately before coupling, and the results are presented in this paper. The importance of coupling is assessed and the loosely coupled algorithm used is described in detail alongside the obtained results.
Keywords:Offshore wind turbine  Floating  CFD  SPH  Multi-body  Dynamics  BEM"}  {"#name":"keyword"  "$":{"id":"key0055"}  "$$":[{"#name":"text"  "_":"blade element momentum method  BILU"}  {"#name":"keyword"  "$":{"id":"key0065"}  "$$":[{"#name":"text"  "_":"block-incomplete upper lower factorisation  FOWT"}  {"#name":"keyword"  "$":{"id":"key0075"}  "$$":[{"#name":"text"  "_":"floating off-shore wind turbine  FSI"}  {"#name":"keyword"  "$":{"id":"key0085"}  "$$":[{"#name":"text"  "_":"fluid structure interaction  GCG"}  {"#name":"keyword"  "$":{"id":"key0095"}  "$$":[{"#name":"text"  "_":"generalised conjugate gradient  GMRES"}  {"#name":"keyword"  "$":{"id":"key0105"}  "$$":[{"#name":"text"  "_":"generalised minimal residual method  HMB2"}  {"#name":"keyword"  "$":{"id":"key0115"}  "$$":[{"#name":"text"  "_":"helicopter multi-block CFD solver  HPC"}  {"#name":"keyword"  "$":{"id":"key0125"}  "$$":[{"#name":"text"  "_":"high performance computer  IBQN-LS"}  {"#name":"keyword"  "$":{"id":"key0135"}  "$$":[{"#name":"text"  "_":"interface block quasi-Newton with an approximation for the Jacobian from a least-squares model  IQN-ILS"}  {"#name":"keyword"  "$":{"id":"key0145"}  "$$":[{"#name":"text"  "_":"interface quasi-Newton algorithm with an approximation for the inverse of the Jacobian from a Least-Squares model  MBDM"}  {"#name":"keyword"  "$":{"id":"key0155"}  "$$":[{"#name":"text"  "_":"Multi-Body Dynamic Model  MPI"}  {"#name":"keyword"  "$":{"id":"key0165"}  "$$":[{"#name":"text"  "_":"message passing interface library  SPH"}  {"#name":"keyword"  "$":{"id":"key0175"}  "$$":[{"#name":"text"  "_":"smoothed particle hydrodynamics method  WT"}  {"#name":"keyword"  "$":{"id":"key0185"}  "$$":[{"#name":"text"  "_":"wind turbine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号