首页 | 本学科首页   官方微博 | 高级检索  
     检索      


CFD modelling of the cross-flow through normal triangular tube arrays with one tube undergoing forced vibrations or fluidelastic instability
Institution:1. School of Engineering, Univeristy of Oviedo, Spain;2. Trinity College Dublin, Ireland
Abstract:A CFD methodology involving structure motion and dynamic re-meshing has been optimized and applied to simulate the unsteady flow through normal triangular cylinder arrays with one single tube undergoing either forced oscillations or self-excited oscillations due to damping-controlled fluidelastic instability. The procedure is based on 2D URANS computations with a commercial CFD code, complemented with user defined functions to incorporate the motion of the vibrating tube. The simulation procedure was applied to several configurations with experimental data available in the literature in order to contrast predictions at different calculation levels. This included static conditions (pressure distribution), forced vibrations (lift delay relative to tube motion) and self-excited vibrations (critical velocity for fluidelastic instability). Besides, the simulation methodology was used to analyze the propagation of perturbations along the cross-flow and, finally, to explore the effect on the critical velocity of the Reynolds number, the pitch-to-diameter ratio and the degrees of freedom of the vibrating cylinder.
Keywords:Fluidelastic instability  Numerical model  Tube arrays  Critical velocity  Disturbance propagation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号