首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lift forces induced by phase lag between the vortex sheddings from two tandem bluff bodies
Institution:1. Maritime Research Centre, Nanyang Technological University, 639798, Singapore;2. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;3. College of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China;1. Department of Mechanical Engineering, Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain;2. Naval Architecture Department, Technical University of Madrid (UPM), 28040 Madrid, Spain;1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China;2. School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom;3. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
Abstract:Flow-induced forces on two tandem circular cylinders of identical diameter are numerically studied at a Reynolds number of 200. The cylinder center-to-center spacing ratio is varied from 2 to 9. We focus on fluctuating (rms) lift coefficient of the upstream cylinder, vortex dynamics in the gap between cylinders, and phase lag between vortex shedding from the two cylinders. The phase lag was a linear function of the spacing ratio as known in the literature; but it is, as proved here, indeed a nonlinear function of the spacing ratio, Strouhal number and convection velocity of vortices in the gap between the cylinders. The shedding from the two cylinders turns out to be inphase and antiphase alternately as the spacing ratio increases. We unearth that both phase lag and spacing ratio influence the fluctuating lift of the upstream cylinder. With an increase in the spacing ratio, while the influence of the spacing ratio on fluctuating lift diminishes rapidly in an overdamped manner, that of the phase lag makes the fluctuating lift variation underdamped sinusoidal. The inphase and antiphase flows correspond to a local maximum and a local minimum, respectively, in the fluctuating lift variation. An equation is deduced, showing the relationship between the fluctuating lift, spacing ratio, and phase lag. The physics behind the damped-sinusoidal variation in the fluctuating lift is discussed. The investigation directs that the streamwise separation between two tandem wings of airplanes/submarines should be taken into account or optimized. It would also be interesting to see whether fish exploits phase-lag-induced lift to enhance its forward thrust.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号