首页 | 本学科首页   官方微博 | 高级检索  
     


Gradient Graphdiyne Induced Copper and Oxygen Vacancies in Cu0.95V2O5 Anodes for Fast-Charging Lithium-Ion Batteries
Authors:Dr. Fan Wang  Juan An  Dr. Han Shen  Zhongqiang Wang  Prof. Dr. Guoxing Li  Prof. Dr. Yuliang Li
Affiliation:Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237 P. R. China
Abstract:Vacancies can significantly affect the performance of metal oxide materials. Here, a gradient graphdiyne (GDY) induced Cu/O-dual-vacancies abundant Cu0.95V2O5@GDY heterostructure material has been prepared as a competitive fast-charging anode material. Cu0.95V2O5 self-catalyzes the growth of gradient GDY with rich alkyne-alkene complex in the inner layer and rich alkyne bonds in the outer layer, leading to the formation of Cu and O vacancies in Cu0.95V2O5. The synergistic effect of vacancies and gradient GDY results in the electron redistribution at the hetero-interface to drive the generation of a built-in electric field. Thus, the Li-ion transport kinetics, electrochemical reaction reversibility and Li storage sites of Cu0.95V2O5 are greatly enhanced. The Cu0.95V2O5@GDY anodes show excellent fast-charging performance with high capacities and negligible capacity decay for 10 000 cycles and 20 000 cycles at extremely high current densities of 5 A g−1 and 10 A g−1, respectively. Over 30 % of capacity can be delivered in 35 seconds.
Keywords:Cu0.95V2O5  Fast Charging  Gradient Graphdiyne  Lithium-Ion Batteries  Self-Catalysis  Vacancy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号