首页 | 本学科首页   官方微博 | 高级检索  
     


DFT Insights into the Variety in the Coordination Modes of the Equatorial Halides in [Au13Ag12(PR3)10X8]+ (X=Cl/Br) Clusters
Authors:Xiaohang Wu  Shiyin Weng  Ying Lv  Shuping He  Prof. Dr. Haizhu Yu
Affiliation:Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 P. R. China
Abstract:The bonding character within metal nanoclusters represents an intriguing topic, shedding light on the inherent driving force for the packing preference in nanomaterials. Herein, density functional theory (DFT) calculations were conducted to investigate the correlation of the series of isomeric [Au13Ag12(PR3)10X8]+ (X=Cl/Br) clusters, which are mainly differentiated by the coordination mode of the equatorial halides (μ2-, μ3- and μ4-) in the rod-like, bi-icosahedral framework. The theoretical simulation corroborates the variety in the configuration of the Au13Ag12 clusters and elucidates the fast isomerization kinetics among the different configurations. The easy tautomerization and the variety in chloride binding modes correspond to a fluxionality character of the equatorial halides and are verified by the potential energy curve analysis. The structural flexibility of the central Au3Ag10 block is the main driving force, while the relatively stronger Ag−X bonding interaction (compared to that of Au−X), and a sufficient number of halides are also requisite for the associating Ag−X tautomerizations.
Keywords:alloy nanoclusters  tautomerization  flexible bonding  density functional theory
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号