首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Interfacial Coupling of Graphene with Nickel Nanoparticles for Water Splitting and Urea Oxidation: A Spectroelectrochemical Investigation
Authors:Dr Sanjit Saha  Dr Gour Mohan Das
Institution:ENSEMBLE3 Centre of Excellence, Wolczynska 133, 01-919 Warsaw, Poland
Abstract:Nickel nanoparticle and graphene interfaces of various stoichiometries were created through electrodeposition techniques. The catalytic behavior of the electrodeposited films was investigated through spectro-electrochemical methodologies. UV-vis absorbance spectra of the electrodeposited films are significantly different in the air and alkaline medium. Furthermore, UV-vis and Raman spectroscopy confirmed the coupling of Ni nanoparticles (Ni-NP) with the graphene framework, along with NiO and Ni(OH)2. A combination of Raman and impedance spectroscopy revealed that the surface adsorption and charge transfer properties of the electrodeposited films are entirely dependent on the defects on graphene structure as well as distribution of Ni-NP on graphene. The electrodeposited films possess heterogeneous catalytic properties with a low overpotential of 50 mV (10 mA/cm−2) for hydrogen evolution reaction, as well as 601 mV and 391 mV (at 50 mA/cm−2) for the oxygen evolution reaction and urea oxidation reaction, respectively. In addition, eelectrodeposited samples show extraordinary overall water splitting performance by achieving a current density of 10 mA/cm2 at a very low applied potential of 1.38 V. This synergistic coupling of Ni and graphene renders the electrodeposited samples promising candidates as electrodes for overall water splitting in alkaline and urea-supplemented solutions.
Keywords:Extinction efficiency  Graphene  Overall water splitting  Raman impedance spectroscopy  Urea oxidation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号