首页 | 本学科首页   官方微博 | 高级检索  
     


Structural Analysis and Properties of Organic-Inorganic Hybrid Ionic Conductor Prepared by Sol-Gel Process
Authors:Nishio  Keishi  Okubo  Koji  Watanabe  Yuichi  Tsuchiya  Toshio
Affiliation:(1) Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Science University of Tokyo, 2641, Yamazaki, Noda-shi, Chiba, 278-8510, Japan
Abstract:Organic-inorganic hybrid lithium ion conductors were prepared by the sol-gel process. The hybrid ion conductor will be used as the electrolyte for Li based high-energy density batteries. The hybrid ion conductor was prepared from a mixture of tetramethyl orthosilicate (TMOS), polyethylene glycol 200 (PEG200), lithium perchlorate (LiClO4) and water. A wet gel was prepared at room temperature. The gels dried at 80°C under vacuum did not contain water. The dried hybrid ion conductor gel had homogeneity and high transparency. Ionic conductivity of the hybrid sample was measured by the complex impedance method and it increased with increasing PEG200 content. The dried hybrid gel that contained no LiClO4 did not show ion conduction. Conductivity on the order of 10–5 S·cm–1 at room temperature was obtained. Structural characterization was done by Fourier Transform Infrared Spectra (FTIR) and NMR measurement of 13C and 1H, and the thermal stability and glass transition properties were studied by DSC. Glass transition temperature decreased with increasing PEG200 content and increased with increasing [Li]/[O] ratio (the oxygen considered is from the polyethylene glycol). Existence of the Si–O–(C2H4O)n–bond and the C–OH bond in the framework of the organic and inorganic phases was confirmed. TMOS and PEG200 were hydrolyzed and condensed. The organic and inorganic phases were chemically bonded and the microstructure of the hybrid matrix was shaped as comb. The comb shape leads to high ionic conduction.
Keywords:organic-inorganic hybrid  ionic conductor  structural analyses
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号