首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the degree of groups of polynomial subgroup growth
Authors:Aner Shalev
Institution:Institute of Mathematics, The Hebrew University, Jerusalem 91904, Israel
Abstract:Let $G$ be a finitely generated residually finite group and let $a_n(G)$ denote the number of index $n$ subgroups of $G$. If $a_n(G) \le n^{\alpha}$ for some $\alpha$ and for all $n$, then $G$ is said to have polynomial subgroup growth (PSG, for short). The degree of $G$ is then defined by ${\mathrm{deg}}(G) = \limsup {{\log a_n(G)} \over {\log n}}$.

Very little seems to be known about the relation between ${\mathrm{deg}}(G)$ and the algebraic structure of $G$. We derive a formula for computing the degree of certain metabelian groups, which serves as a main tool in this paper. Addressing a problem posed by Lubotzky, we also show that if $H \le G$ is a finite index subgroup, then ${\mathrm{deg}}(G) \le {\mathrm{deg}}(H)+1$.

A large part of the paper is devoted to the structure of groups of small degree. We show that $a_n(G)$ is bounded above by a linear function of $n$ if and only if $G$ is virtually cyclic. We then determine all groups of degree less than $3/2$, and reveal some connections with plane crystallographic groups. It follows from our results that the degree of a finitely generated group cannot lie in the open interval $(1, 3/2)$.

Our methods are largely number-theoretic, and density theorems à la Chebotarev play essential role in the proofs. Most of the results also rely implicitly on the Classification of Finite Simple Groups.

Keywords:
点击此处可从《Transactions of the American Mathematical Society》浏览原始摘要信息
点击此处可从《Transactions of the American Mathematical Society》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号