首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Studies on the interaction of gallic acid with human serum albumin in membrane mimetic environments
Authors:Zhang Yaheng  Dong Lijun  Li Jiazhong  Chen Xingguo
Institution:Department of Chemistry, Lanzhou University, Lanzhou 730000, China.
Abstract:In this study the interaction between gallic acid and human serum albumin (HSA) in AOT/isooctane/water microemulsions was characterized for the first time using fluorescence quenching technique in combination with UV absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy and dynamic light scattering (DLS) technique. In water-surfactant molar ratio (omega(o))=20 microemulsions fluorescence data revealed the presence of one binding site of gallic acid on HSA and its binding constants (K) were (1.18+/-0.02)x10(4), (1.13+/-0.02)x10(4), (1.03+/-0.02)x10(4), (0.95+/-0.02)x10(4), (0.87+/-0.02)x10(4) and (0.82+/-0.03)x10(4)M(-1) at 282, 289, 296, 303, 310 and 317 K, respectively. The affinities in microemulsions were much higher than that in buffer solution. FT-IR and CD data suggested that the protein conformations were altered with the reductions of alpha-helices from 54-56% for free HSA in buffer to 40-41% for free HSA in microemulsion. After binding with gallic acid, the alpha-helices of HSA in microemulsion increased 2-7% for different drug-protein molar ratio. The thermodynamic functions standard enthalpy (Delta H(0)) and standard entropy (DeltaS(0)) for the reaction were calculated to be -8.10 kJ mol(-1) and 49.42 J mol(-1)K(-1). These results indicated that gallic acid bound to HSA mainly by hydrophobic interaction and electrostatic interaction in microemulsions. In addition, the displacement experiments confirmed that gallic acid could bind to the site I of HSA, which was approved by the molecular modeling study. Furthermore, the DLS data suggested that HSA may locate at the interface of the microemulsion and gallic acid could interact with them.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号