首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Topological Invariants in Braid Theory
Authors:Berger  Mitchell A
Institution:(1) Mathematics, University College London, Gower Street, London, WC1E 6BT, U.K
Abstract:Many invariants of knots and links have their counterparts in braid theory. Often, these invariants are most easily calculated using braids. A braid is a set of n strings stretching between two parallel planes. This review demonstrates how integrals over the braid path can yield topological invariants. The simplest such invariant is the winding number – the net number of times two strings in a braid wrap about each other. But other, higher-order invariants exist. The mathematical literature on these invariants usually employs techniques from algebraic topology that may be unfamiliar to physicists and mathematicians in other disciplines. The primary goal of this paper is to introduce higher-order invariants using only elementary differential geometry.Some of the higher-order quantities can be found directly by searching for closed one-forms. However, the Kontsevich integral provides a more general route. This integral gives a formal sum of all finite order topological invariants. We describe the Kontsevich integral, and prove that it is invariant to deformations of the braid.Some of the higher-order invariants can be used to generate Hamiltonian dynamics of n particles in the plane. The invariants are expressed as complex numbers; but only the real part gives interesting topological information. Rather than ignoring the imaginary part, we can use it as a Hamiltonian. For n = 2, this will be the Hamiltonian for point vortex motion in the plane. The Hamiltonian for n = 3 generates more complicated motions.
Keywords:knots  braids  Hamiltonian dynamics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号