首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Correction to DFT interaction energies by an empirical dispersion term valid for a range of intermolecular distances
Authors:Deligkaris Christos  Rodriguez Jorge H
Institution:Theoretical and Computational Biomolecular Physics Group, Department of Physics, Purdue University, West Lafayette, IN 47907, USA. cdeligkaris@drury.edu
Abstract:The computation of intermolecular interaction energies via commonly used density functionals is hindered by their inaccurate inclusion of medium and long range dispersion interactions. Practical computation of inter- and intra-macrobiomolecule interaction energies, in particular, requires a fairly accurate yet not overly expensive methodology. It is also desirable to compute intermolecular energies not only at their equilibrium (lowest energy) configurations but also over a range of biophysically relevant distances. We present a method to compute intermolecular interaction energies by including an empirical correction for dispersion which is valid over a range of intermolecular distances. This is achieved by optimizing parameters that moderate the empirical correction by explicit comparison of density functional (B3LYP) energies with distance-dependent (DD) reference values obtained at the CCSD(T)/CBS limit. The resulting method, hereafter referred to as B3LYP-DD, yields interaction energies with an accuracy generally better than 1 kcal mol(-1) for different types of noncovalent complexes, over a range of intermolecular distances and interaction strengths, relative to the expensive CCSD(T)/CBS standard. For a training set of dispersion interacting complexes, B3LYP-DD interaction energies in combination with diffuse functions display absolute errors equal to or smaller than 0.68 kcal mol(-1). The empirical correction does not significantly increase the computational cost as compared to standard density functional calculations. Applications relevant to biomolecular energy and structure, such as prediction of DNA base-pair interactions, are also presented.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号