首页 | 本学科首页   官方微博 | 高级检索  
     


Ab initio derivation of multi-orbital extended Hubbard model for molecular crystals
Authors:Tsuchiizu Masahisa  Omori Yukiko  Suzumura Yoshikazu  Bonnet Marie-Laure  Robert Vincent
Affiliation:Department of Physics, Nagoya University, Nagoya 464-8602, Japan. tsuchiiz@s.phys.nagoya-u.ac.jp
Abstract:From configuration interaction (CI) ab initio calculations, we derive an effective two-orbital extended Hubbard model based on the gerade (g) and ungerade (u) molecular orbitals (MOs) of the charge-transfer molecular conductor (TTM-TTP)I(3) and the single-component molecular conductor [Au(tmdt)(2)]. First, by focusing on the isolated molecule, we determine the parameters for the model Hamiltonian so as to reproduce the CI Hamiltonian matrix. Next, we extend the analysis to two neighboring molecule pairs in the crystal and we perform similar calculations to evaluate the inter-molecular interactions. From the resulting tight-binding parameters, we analyze the band structure to confirm that two bands overlap and mix in together, supporting the multi-band feature. Furthermore, using a fragment decomposition, we derive the effective model based on the fragment MOs and show that the staking TTM-TTP molecules can be described by the zig-zag two-leg ladder with the inter-molecular transfer integral being larger than the intra-fragment transfer integral within the molecule. The inter-site interactions between the fragments follow a Coulomb law, supporting the fragment decomposition strategy.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号