首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Role of liquid polymorphism during the crystallization of silicon
Authors:Desgranges Caroline  Delhommelle Jerome
Institution:Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58201, USA.
Abstract:Using molecular simulation, we establish the pivotal role played by liquid polymorphs during the crystallization of silicon. When undercooled at a temperature 20% below the melting point, a silicon melt is under the form of the highly coordinated, high-density liquid (HDL) polymorph. We find that crystallization starts with the formation, within the HDL liquid, of a nanosized droplet of the least stable liquid polymorph, known as the almost tetracoordinated low-density liquid (LDL) polymorph. We then show that the crystalline embryo forms within the LDL droplet, close to the interface with the surrounding HDL liquid, thereby following a pathway associated with a much lower free energy barrier than the direct formation of the crystalline embryo from the HDL liquid would have required. This implies that, for substances exhibiting liquid polymorphs, theories, like the classical nucleation theory, and empirical rules, like Ostwald's rule, should be modified to account for the role of liquid polymorphs in the nucleation process.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号