首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Inductively coupled plasma atomic emission spectrometric determination of 27 trace elements in table salts after coprecipitation with indium phosphate
Authors:Shigehiro Kagaya  Toshiyuki Mizuno  Koji Tohda
Institution:Graduate School of Science and Engineering for Research, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
Abstract:The coprecipitation method using indium phosphate as a new coprecipitant has been developed for the separation of trace elements in table salts prior to their determination using inductively coupled plasma atomic emission spectrometry (ICP-AES). Indium phosphate could quantitatively coprecipitate 27 trace elements, namely, Be, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, in a table salt solution at pH 10. The rapid coprecipitation technique, in which complete recovery of the precipitate was not required in the precipitate-separation process, was completely applicable, and, therefore, the operation for the coprecipitation was quite simple. The coprecipitated elements could be determined accurately and precisely by ICP-AES using indium as an internal standard element after dissolution of the precipitate with 5 mL of 1 mol L−1 nitric acid. The detection limits (three times the standard deviation of the blank values, n = 10) ranged from 0.001 μg (Lu) to 0.11 μg (Zn) in 300 mL of a 10% (w/v) table salt solution. The method proposed here could be applied to the analyses of commercially available table salts.
Keywords:Trace elements  Coprecipitation  Indium phosphate  Table salt  Inductively coupled plasma atomic emission spectrometry
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号