首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nonenzymatic glucose voltammetric sensor based on gold nanoparticles/carbon nanotubes/ionic liquid nanocomposite
Authors:Hong Zhu
Institution:Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
Abstract:In this paper, a novel nonenzymatic glucose voltammetric sensor based on a kind of nanocomposite of gold nanoparticles (GNPs) embedded in multi-walled carbon nanotubes (MWCNTs)/ionic liquid (IL) gel was reported. The surface morphology of this nanocomposite was characterized using X-ray photoelectron spectrometer (XPS), scanning electron microscope (SEM) and transmission electron microscope (TEM), respectively. It can be found that most of GNPs lie close to the ektexine of MWCNTs and the others have obviously inserted the inner of MWCNTs through the defects or ends of MWCNTs, due to the attraction between GNPs and MWCNTs as well as the repulsion between GNPs and IL. Voltammetry was used to evaluate the electrocatalytic activities of the nanocomposite biosensor toward nonenzymatic glucose oxidation in alkaline media. The GNPs embedded in MWCNTs/IL gel have strong and sensitive voltammetric responses to glucose, owing to a possible synergistic effect among GNPs, MWCNTs and IL. Under the optimal condition, the linear range for the detection of the glucose is 5.0-120 μM with the correlation coefficient of 0.998, based on the oxidation peak observed during cathodic direction of the potential sweep. The kinetics and mechanism of glucose electro-oxidation were intensively investigated in this system. This kind of nanocomposite biosensor is also highly resistant toward poisoning by chloride ions and capable of sensing glucose oxidation in the presence of 20 μM uric acid and 70 μM ascorbic acid. This work provides a simple and easy approach to the detection of glucose in body fluid with high sensitivity and excellent selectivity.
Keywords:Biosensor  Glucose  Nanocomposite  Gold nanoparticles  Carbon nanotubes  Ionic liquid
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号