首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermal stability of the PBAT biofilms with cellulose nanostructures/essential oils for active packaging
Authors:da Silva  Cristina Gomes  Kano  Fabiany Sayuri  dos Santos Rosa  Derval
Institution:1.Federal University of ABC, Santo André, SP, Brazil
;2.Federal University of Amazonas, Manaus, AM, Brazil
;
Abstract:

The primary objective of this study is to evaluate the thermal stability of the active films with the cellulose nanostructure (CNS, 5?mass%) treated with encapsulated essential oils (EOs), eugenol and linalool. CNS untreated and treated were incorporated in the poly(butylene adipate-co-terephthalate) (PBAT) polymer matrix prepared by casting. In this study, all samples were characterized by FTIR, DRX, TG, DSC and SEM, elucidating the contribution of each component in the final films. CNS untreated and treated with EOs were characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis (TGA), confirming the interaction between these components. The active biofilms were analyzed by TGA and DSC analyses (differential scanning calorimetry), confirming that their thermal stability was maintained similar to the neat PBAT film, without loss of properties. The CI (crystallinity index, %) of the polymeric films was calculated from heat fusion (ΔH) values, indicating that the incorporation of the nanostructures into the PBAT matrix increases the crystallinity of the biofilms, from 11.5 (neat PBAT) to 13.8% (PBAT/CNS-E), acting as a nucleating agent in the polymeric matrix. The presence of the EOs did not decrease the CNS stability, as well of the biocomposite films. Moreover, the thermal analysis confirmed that the EO was well involved by the CNS, before and after the incorporation in the PBAT polymer, as observed in the SEM images.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号