首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermodynamic performance of automobile air conditioners working with R430A as a drop-in substitute to R134a
Authors:Andrew Pon Abraham  J D  Mohanraj  M
Institution:1.Department of Automobile Engineering, Kumaraguru College of Technology, Coimbatore, 641049, India
;2.Department of Mechanical Engineering, Hindusthan College of Engineering and Technology, Coimbatore, 641032, India
;3.HANS Industrial Corporation, New Delhi, 110030, India
;
Abstract:

The refrigerant R134a is to be phasing out soon in automobile air conditioning applications due to its high global warming potential of 1430. Hence, it is essential to identify a sustainable alternative refrigerant to phase out R134a in automobile air conditioners. This paper presents the experimental thermodynamic performance of R430A (composed of R152a and R600a, in the ratio of 76:24, by mass) as a drop-in substitute to replace R134a in automobile air conditioners. The experiments were carried out in an automobile air conditioner test setup equipped with a variable frequency drive electrical motor. During experimentation, the ambient temperature and ambient relative humidity were maintained at 35?±?1 °C and 65?±?5%, respectively. The compressor speed was varied in the range between 1000 and 3000 rpm. The results showed that the coefficient of performance of an automobile air conditioner working with R430A was found to be 12–20% higher with 6–11% reduced compressor power consumption when compared to R134a. The R430A has 2–6 °C higher compressor discharge temperature when compared to R134a. The physical stability of the lubricant used in the compressor was retained while operating with R430A. The maximum exergy destruction occurs in the compressor (0.28 kW for R134a and 0.24 kW for R430A) followed by evaporator (0.16 kW for R134a and 0.14 kW for R430A), condenser (0.14 for R134a and 0.12 kW for R430A) and expansion valve (0.043 kW for R134a and 0.039 kW for R430A) at a compressor speed of 1000?±?10 rpm. The exergy destruction of the system operating with R430A was found to be 12–28% lower when compared to R134a systems due to its favorable thermo-physical properties. The total equivalent warming impact of R430A was found to be lower when compared to R134a by about 47.3%, 35% and 32.4% for LPG, petrol and diesel vehicles, respectively. The results confirmed that R430A is a good drop-in substitute to replace R134a in existing automobile air conditioning systems.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号