首页 | 本学科首页   官方微博 | 高级检索  
     


Torsional barriers in aromatic molecular clusters as probe of the electronic properties of the chromophore.
Authors:Christoph Jacoby  Michael Schmitt
Affiliation:Heinrich-Heine-Universit?t, Institut für Herz- und Kreislaufphysiologie, 40225 Düsseldorf, Germany.
Abstract:We present a computer program that is capable of fitting n-fold torsional barriers Vn (n = 2-6) and torsional constants F simultaneously to high- and low-resolution spectroscopic data of different isotopomeric internal rotors. The program has been utilized to fit independently barriers and torsional constants for both electronic states of several aromatic clusters. The constant F of the ammonia moiety in the phenol-ammonia cluster is shown to decrease upon electronic excitation, thus imaging the formation of a hydrogen-bonded complex between the phenoxy radical and the NH4 radical in the excited state. In contrast, for the naphthol-ammonia 1:1 clusters no change of F of ammonia could be found. For phenol-methanol cluster we found a decrease of F upon excitation which points to a stronger hydrogen bond between phenol and methanol in the excited state. A strong reduction of the torsional barrier upon excitation points to the formation of a methoxonium radical in a similar photoreaction as in phenol-ammonia cluster. For the phenol-water system we postulate the same mechanism, a photoreaction, which leads to a translocated hydrogen atom in the S1 state what can be deduced from the change of the torsional constant upon electronic excitation.
Keywords:computer chemistry  hydrogen transfer  internal rotation  isotope effects  vibrational spectroscopy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号