首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fast thermal desorption spectroscopy study of morphology and vaporization kinetics of polycrystalline ice films
Authors:Lu Haiping  McCartney Stephanie A  Chonde M  Smyla D  Sadtchenko Vlad
Institution:Department of Chemistry, The George Washington University, Washington, District of Columbia 20052, USA.
Abstract:Fast thermal desorption spectroscopy was used to investigate the vaporization kinetics of thin (50-100 nm) H(2)O(18) and HDO tracer layers from 2-5 microm thick polycrystalline H(2)O(16) ice films at temperatures ranging from -15 to -2 degrees C. The isothermal desorption spectra of tracer species demonstrate two distinct peaks, alpha and beta, which we attribute to the vaporization of H(2)O(18) initially trapped at or near the grain boundaries and in the crystallites of the polycrystalline ice, respectively. We show that the diffusive transport of the H(2)O(18) and HDO tracer molecules in the bulk of the H(2)O(16) film is slow as compared to the film vaporization. Thus, the two peaks in the isothermal spectra are due to unequal vaporization rates of H(2)O(18) from grain boundary grooves and from the crystallites and, therefore, can be used to determine independently the vaporization rate of the single crystal part of the film and rate of thermal etching of the film. Our analysis of the tracer vaporization kinetics demonstrates that the vaporization coefficient of single crystal ice is significantly greater than those predicted by the classical vaporization mechanism at temperatures near ice melting point. We discuss surface morphological dynamics and the bulk transport phenomena in single crystal and polycrystalline ice near 0 degrees C.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号