首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ordering transition and demixing of a binary mixture of thick and thin rodlike molecules in the presence of an external field
Authors:Dobra Szabolcs  Szalai István  Varga Szabolcs
Institution:Department of Physics, University of Veszprém, PO Box 158, H-8200 Veszprém, Hungary.
Abstract:The effect of an external field (electric/magnetic) on the phase behavior of the binary mixture of very long thick and thin rodlike particles is studied. Both the thick and thin particles possess positive but different susceptibility anisotropics (Delta alpha). The difference in the extent of interaction between the external field and the two species is varied by means of a coupling parameter (l = Delta alpha(thick)/Delta alpha(thin)). Isotropic-nematic phase transition and demixing phase transitions taking place both in the isotropic and nematic phases are examined as a function of field strength on the level of the second virial theory of Onsager in the range of 0 < l <1. The approximate sixth order Legendre polynomial expansion method is used to represent the excluded volume interaction between the rodlike particles. It is found that the isotropic phase becomes weakly nematic (paranematic) in the presence of external field and the field orients both components in the direction of the field even if the field does not have direct interaction with the thick component (l = 0). Analytical expressions are derived for the external field induced order parameters and birefringence. The increasing field destabilizes both types of demixing transitions (isotropic-isotropic and nematic-nematic) and the paranematic-nematic phase transition. Moreover it induces closed loop immiscibility, and upper and lower critical points terminating the paranematic-nematic phase coexistence may occur for low values of the coupling parameter. It is interesting that while the phase boundaries of the paranematic-paranematic demixing and the paranematic-nematic transitions are very sensitive to the value of the coupling parameter at low pressures, the paranematic-nematic and nematic-nematic phase boundaries are practically independent of the coupling parameter at high pressures.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号