首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Relative Boltzmann entropy, evolution equations for fluctuations of thermodynamic intensive variables, and a statistical mechanical representation of the zeroth law of thermodynamics
Authors:Chan Eu Byung
Institution:Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 2K6, Canada.
Abstract:Generalized thermodynamics or extended irreversible thermodynamics presumes the existence of thermodynamic intensive variables (e.g., temperature, pressure, chemical potentials, generalized potentials) even if the system is removed from equilibrium. It is necessary to properly understand the nature of such intensive variables and, in particular, of their fluctuations, that is, their deviations from those defined in the extended irreversible thermodynamic sense. The meaning of temperature is examined by means of a kinetic theory of macroscopic irreversible processes to assess the validity of the generalized (or extended) thermodynamic method applied to nonequilibrium phenomena. The Boltzmann equation is used for the purpose. Since the relative Boltzmann entropy has been known to be intimately related to the evolution of the aforementioned fluctuations in the intensive thermodynamic variables, we derive the evolution equations for such fluctuations of intensive variables to lay the foundation for investigating the physical implications and evolution of the relative Boltzmann entropy, so that the range of validity of the thermodynamic theory of irreversible processes can be elucidated. Within the framework of this work, we examine a special case of the evolution equations for the aforementioned fluctuations of intensive variables, which also facilitate investigation of the molecular theory meaning of the zeroth law of thermodynamics. We derive an evolution equation describing the relaxation of temperature fluctuations from its local value and present a formula for the temperature relaxation time.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号