首页 | 本学科首页   官方微博 | 高级检索  
     


Transport of iron ions from chloride solutions using cellulose triacetate matrix inclusion membranes with an ionic liquid carrier
Authors:Monika Baczynska  Martyna Rzelewska  Magdalena Regel-Rosocka  Maciej Wisniewski
Affiliation:1.Institute of Chemical Technology and Engineering, Faculty of Chemical Technology,Poznan University of Technology,Poznan,Poland
Abstract:In this study, liquid membranes denoted as polymer inclusion membranes (PIMs) consisting of cellulose triacetate (CTA) as a polymer matrix, o-nitrophenyl octyl ether (NPOE) as a plasticiser and phosphonium ionic liquids, trihexyltetradecylphosphonium chloride (Cyphos® IL 101) and trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate (Cyphos® IL 104), as carriers of metal ions were developed. The transport of Fe(II) and Fe(III) from chloride aqueous solutions across PIMs was investigated. It is shown that these phosphonium ionic liquids are effective carriers of Fe(III) ions through PIMs. While, for Fe(II), the highest value of extraction efficiency and recovery factor after 72 h does not exceed 40%, by contrast, the values of these parameters for Fe(III) transport ranged from 60% to almost 100%. Additionally, the results indicate the transport rate to be strongly influenced by the amount of carrier in the membrane. The highest initial flux of Fe(III) and permeability coefficient are noted for the membrane containing 40 mass % Cyphos® IL 101. However, it is shown that the transport of Fe(III) increases as the carrier content is increased then decreases at a content of the carrier equal to 40 mass %. It appears that the Fe(III)-carrier complex decomposes with difficulty at the interface of the membrane-receiving phase, hence leading to low values of recovery factor Fe(III).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号