首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pressure-amorphized cubic structure II clathrate hydrate: crystallization in slow motion
Authors:Bauer Marion  Többens Daniel M  Mayer Erwin  Loerting Thomas
Institution:Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria.
Abstract:A range of techniques has so far been employed for producing amorphous aqueous solutions. In case of aqueous tetrahydrofuran (THF) this comprises hyperquenching of liquid droplets, vapour co-deposition and pressure-induced amorphization of the crystalline cubic structure II clathrate. All of these samples are thermally labile and crystallize at temperatures above 110 K. We here outline a variant of the pressure-amorphization protocol developed by Suzuki Phys. Rev. B, 2004, 70, 172108], which results in a highly crystallization resistant amorphous THF hydrate. The hydrate produced according to our protocol (annealing to 180 K at 1.8 GPa rather than to 150 K at 1.5 GPa) does not transform to the cubic structure II THF clathrate even at 150 K. We track the reason for this higher stability to the presence of crystalline remnants when following the Suzuki protocol, which are removed when using our protocol involving higher pressures and an annealing step. These crystalline remnants later serve as crystallization seeds lowering the thermal stability of the amorphous sample. Our protocol thus makes a purely amorphous THF hydrate available to the research community. We use powder X-ray diffraction to study the process of nucleation and slow crystal growth in the temperature range 160-200 K and find that the local cage structure and periodicity of the fully crystalline hydrate develops even at the earliest stages of crystallization, when the "clathrate crystal" has a size of about two unit cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号