首页 | 本学科首页   官方微博 | 高级检索  
     


Wakes of elliptical cylinders at low Reynolds number
Affiliation:1. Institute for Turbulence-Noise-Vibration Interaction and Control, Harbin Institute of Technology (Shenzhen), Shenzhen, China;2. School of Aeronautics and Astronautics, Sun Yat-sen University (Shenzhen), China
Abstract:The wakes of elliptical cylinders are numerically investigated at a Reynolds number ReD = 150. ANSYS-Fluent, based on the finite volume method, is used to simulate two-dimensional Newtonian fluid flow. The cylinder cross-sectional aspect ratio (AR) is varied from 0.25 to 1.0 (circular cylinder), and the angle of attack (α) of the cylinder is changed as α = 0° – 90°. With the changes in AR and α, three distinct wake patterns (patterns I, II, III) are observed, associated with different characteristics of fluid forces. Steady wake (pattern I) is characterised by two steady bubbles forming behind the cylinder, occurring at AR < 0.37 and α < 2.5°. Time-mean drag and fluctuating lift coefficients are small. Pattern II refers to Karman wake followed by steady wake (AR ≥ 0.37 – 0.67, depending on α) with the Karman street transitioning to two steady shear layers downstream. An inflection angle αi is identified where the time-mean drag of the elliptical cylinder is identical to that of a circular cylinder. Pattern III is the Karman wake followed by secondary wake (AR ≤ 0.67, α > 52°), where the Karman street forming behind the cylinder is modified to a secondary vortex street with a low frequency. The Time-mean drag coefficient is maximum for this pattern.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号