首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparative study of pineapple leaf microfiber and aramid fiber reinforced natural rubbers using dynamic mechanical analysis
Institution:1. Polymer Science and Technology Program, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand;2. Rubber Technology Research Center, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand;3. Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand;4. Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand;1. Department of Mechanical Engineering, SRM TRP Engineering College, Mannachanallur Taluk, Irungalur, Tamil Nadu 621105, India;2. Department of Mechanical Engineering, Srinix College of Engineering, Ranipatna, Balasore, Odisha 756001, India;3. Department of Chemistry, Hislop College, Civil Lines, Nagpur, Maharashtra 440001, India;4. Institute of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India;5. Department of Mechanical Engineering, St.Joseph''s Institute of Technology, Chennai, Tamil Nadu 600119, India;6. Department of Civil Engineering, Shiv Nadar University, Dadri, Greater Noida, Uttar Pradesh 201314, India;1. Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand;2. Rubber Technology Research Center, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand
Abstract:Natural fiber is often considered inadequate for high performance reinforcement of polymer matrix composites. However, some natural fibers have relatively high mechanical properties with modulus close to that of high-performance synthetic fibers. Since the reinforcing efficiency of a short fiber is determined not only by the fiber modulus, but also by other physical properties such as the length to diameter ratio. Here it is shown, for the first time, that pineapple leaf fiber, whose modulus is somewhat lower than that of aramid fiber, can be used to reinforce natural rubber more effectively than aramid fiber. The situation was achieved by breaking down the fiber bundles into the constituent microfibers to gain very high aspect ratio. Comparisons were made at fiber contents of 2, 5 and 10 parts (by weight) per hundred of rubber (phr) using dynamic mechanical analysis over a range of temperature. The results reveals that at temperature below the glass transition of the matrix rubber and low fiber contents of 2 and 5 phrs, aramid fiber displays slightly better reinforcement efficiency. At high temperatures of 25 and 60 °C and high fiber content of 10 phr, pineapple leaf microfiber clearly displays higher reinforcement efficiency than does aramid fiber. Surface modification of the fiber by silane treatment provides a slight improvement in reinforcing efficiency.
Keywords:Fiber reinforced rubber  Natural rubber composites  Pineapple leaf fiber  Adhesion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号