首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Delay in response of turbulent heat transfer against acceleration or deceleration of flow in a pipe
Institution:Department of Mechanical Engineering, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
Abstract:To predict the heat transfer enhancements that result from the application of a pulsating flow in a pipe, we experimentally investigated the turbulent heat transfer variations produced in response to sudden accelerations or decelerations to flows within a pipe. To accomplish this, the Reynolds numbers with the valve open (Re1) and close (Re0) were systematically varied in the range of 8,000 ≤ Re1 ≤ 34,000 and 700 ≤ Re0 ≤ 23,000, respectively, and in-pipe spatiotemporal heat transfer variations were measured using infrared thermography simultaneously with temporal variations to the in-pipe flow properties. Based on the experimental results, it was found that the heat transfer delays that occur in response to accelerations or decelerations can be characterized using the corresponding time lag Δt and first-order time constant τ. The values of Δt and τ can be expressed as non-dimensional forms of Δt/(ν/uτ2) and τ/(R/uτ), respectively, where uτ is the pipe wall friction velocity, ν is the kinematic viscosity of the fluid, and R is the pipe radius.
Keywords:Forced convection  Turbulent heat transfer  Pipe flow  Infrared thermography  Spatiotemporal measurement
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号