首页 | 本学科首页   官方微博 | 高级检索  
     


Model basis states for photons and "empty waves"
Authors:Malcolm H. Mac Gregor
Affiliation:(1) Lawrence Livermore National Laboratory, 94550 Livermore, California
Abstract:From the perspective of physical realism (PR), a photon is a localized entity that carries energy and momentum, and which is surrounded by a wave packet (anempty wave) that is devoid of observable energy or momentum. In creating quantized PR basis states for a photon wave packet, three requirements must be met:(1) The basis states must each carry the frequency of the wave;(2) They must closely resemble the photon, so that e.g. they scatter in the same manner from an optical mirror;(3) They must have infinitesimal energy, linear momentum, and angular momentum. An essentially zero-energy "empty wave" quantum-a "zeron"-is defined which meets these requirements. It is created as an asymmetric single-particle (or single-antiparticle) excitation of the vacuum state, with the "particle" (or "antiparticle") and its associated "hole" (or "antihole") forming a rotational bound state. The photon is reproduced as a symmetric particle-antiparticle excitation of the vacuum state, with the "particle" and "antiparticle" also forming a rotational bound state. The relativistic transformation problem is discussed. A key point in this development is the deduction of the correct equation of motion for a "hole" state in an external electrostatic field.
Keywords:photon model  photon wave quanta  empty waves
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号