首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Attenuation coefficient estimation using experimental diffraction corrections with multiple interface reflections
Authors:Lerch Terence P  Cepel Raina  Neal Steven P
Institution:Mechanical and Aerospace Engineering, E2412 Lafferre Hall, University of Missouri-Columbia, Columbia, MO 65211, USA.
Abstract:The ultrasonic attenuation coefficient of a fluid or solid is an acoustic parameter routinely estimated for the purpose of materials characterization and defect/disease detection. This paper describes a broadband attenuation coefficient estimation technique that combines two established estimation approaches. The key elements of these two approaches are: (1) the use of magnitude spectrum ratios of front surface, first back surface, and second back surface reflections from interfaces of materials with plate-like geometries, and (2) the use of an experimental diffraction correction approach to avoid diffraction losses. The combined estimation approach simplifies the attenuation coefficient estimation process by eliminating the need to explicitly make diffraction corrections or calculate reflection/transmission coefficients. The approach yields estimates of the attenuation coefficient, reflection coefficient, and material density. Models, experimental procedures, and signal analysis procedures, which support implementation of the approach, are presented. Attenuation coefficient and reflection coefficient estimates are presented for water and solid samples with estimates based on measurements made with multiple transducers.
Keywords:43  20  Hq  43  20  Ye  43  20  −f  43  35  Cg
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号