首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries
Authors:Ng See-How  Tran Nicolas  Bramnik Kirill G  Hibst Hartmut  Novák Petr
Institution:Paul Scherrer Institut, Electrochemistry Laboratory, 5232 Villigen PSI, Switzerland.
Abstract:Li(4)V(3)O(8) materials have been prepared by chemical lithiation by Li(2)S of spherical Li(1.1)V(3)O(8) precursor materials obtained by a spray-drying technique. The over-lithiated vanadates were characterised physically by using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and electrochemically using galvanostatic charge-discharge and cyclic voltammetry measurements in both the half-cell (vs. Li metal) and full-cell (vs. graphite) systems. The Li(4)V(3)O(8) materials are stable in air for up to 5 h, with almost no capacity drop for the samples stored under air. However, prolonged exposure to air will severely change the composition of the Li(4)V(3)O(8) materials, resulting in both Li(1.1)V(3)O(8) and Li(2)CO(3). The electrochemical performance of these over-lithiated vanadates was found to be very sensitive to the conductive additive (carbon black) content in the cathode. When sufficient carbon black is added, the Li(4)V(3)O(8) cathode exhibits good cycling behaviour and excellent rate capabilities, matching those of the Li(1.1)V(3)O(8) precursor material, that is, retaining an average charge capacity of 205 mAh g(-1) at 2800 mA g(-1) (8C rate; 1C rate means full charge or discharge of a battery in one hour), when cycled in the potential range of 2.0-4.0 V versus Li metal. When applied in a non-optimised full cell system (vs. graphite), the Li(4)V(3)O(8) cathode showed promising cycling behaviour, retaining a charge capacity (Li(+) extraction) above 130 mAh g(-1) beyond 50 cycles, when cycled in the voltage range of 1.6-4.0 V, at a specific current of 117 mA g(-1) (C/3 rate).
Keywords:cathode  electrochemistry  full cell electrochemistry  high‐capacity lithiation  lithium‐ion batteries  over‐lithiated vanadates
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号