首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Correlation between the molecular structure and the corrosion inhibition efficiency of chestnut tannin in acidic solutions
Abstract:The frontier orbital theory and the inhibitor adsorption theory were applied to the results of the quantum calculations and corrosion rate measurements, respectively, in order to elucidate the chestnut tannin inhibitory action on low-carbon steel corrosion in 2 M HCl. Nine major constituents of chestnut tannin—vescalagin, castalagin, vescalin, castalin, gallic acid, ellagic acid, mono-, di- and trigalloylglucose—were modeled by molecular mechanics, molecular dynamics and semiempirical quantum NDDO method with PM3 parametrization. The geometrical structure, the energy of the highest occupied (HOMO) and lowest unoccupied molecular orbital (LUMO), the HOMO–LUMO energy gap, the distribution of the HOMO electron density and the magnitude and direction of the dipole moment were calculated for each molecule. Molecular reactivity that is related to its adsorbability by the HSAB principle, was studied by calculating the absolute electronegativity, absolute hardness and the electron donating ability. The quantum calculations results, coupled with those derived from the adsorption theory, gave a consistent picture of the investigated corrosion system.
Keywords:Tannin  Corrosion inhibitor  Molecular modeling  Adsorption isotherm
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号