首页 | 本学科首页   官方微博 | 高级检索  
     


On the effects of dilute polymers on driven cavity turbulent flows
Authors:Alex Liberzon
Affiliation:School of Mechanical Engineering, Tel Aviv University, International Collaboration for Turbulence Research (ICTR), Ramat Aviv 69978, Israel;International Collaboration for Turbulence Research, The Netherlands
Abstract:Effects of dilute polymer solutions on a lid-driven cubical cavity turbulent flow are studied via particle image velocimetry (PIV). This canonical flow is a combination of a bounded shear flow, driven at constant velocity and vortices that change their spatial distribution as a function of the lid velocity. From the two-dimensional PIV data we estimate the time averaged spatial fields of key turbulent quantities. We evaluate a component of the vorticity–velocity correlation, namely 〈ω3v〉, which shows much weaker correlation, along with the reduced correlation of the fluctuating velocity components, u and v. There are two contributions to the reduced turbulent kinetic energy production −〈u vSuv, namely the reduced Reynolds stresses, −〈u v〉, and strongly modified pointwise correlation of the Reynolds stress and the mean rate-of-strain field, Suv. The Reynolds stresses are shown to be affected because of the derivatives of the Reynolds stresses, u v〉/∂y that are strongly reduced in the same regions as the vorticity–velocity correlation. The results, combined with the existing evidence, support the phenomenological model of polymer effects propagating from the polymer scale to the velocity derivatives and through the mixed-type correlations and Reynolds stress derivatives up to the turbulent velocity fields. The effects are shown to be qualitatively similar in different flows regardless of forcing type, homogeneity or presence of liquid–solid boundaries.
Keywords:Dilute polymer   Turbulent flow   Lid-driven cavity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号