首页 | 本学科首页   官方微博 | 高级检索  
     


A low Reynolds number variant of partially-averaged Navier-Stokes model for turbulence
Authors:J.M. Ma  S.-H. Peng  L. Davidson  F.J. Wang
Affiliation:a College of Water Conservancy & Civil Engineering, China Agricultural University, Qinghua East Road 17, Haidian District, Beijing, China
b Department of Applied Mechanics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
c Department of Aeronautics and Systems Technology, Swedish Defence Research Agency (FOI), SE-16940 Stockholm, Sweden
Abstract:A low Reynolds number (LRN) formulation based on the Partially Averaged Navier-Stokes (PANS) modelling method is presented, which incorporates improved asymptotic representation in near-wall turbulence modelling. The effect of near-wall viscous damping can thus be better accounted for in simulations of wall-bounded turbulent flows. The proposed LRN PANS model uses an LRN k-ε model as the base model and introduces directly its model functions into the PANS formulation. As a result, the inappropriate wall-limiting behavior inherent in the original PANS model is corrected. An interesting feature of the PANS model is that the turbulent Prandtl numbers in the k and ε equations are modified compared to the base model. It is found that this modification has a significant effect on the modelled turbulence. The proposed LRN PANS model is scrutinized in computations of decaying grid turbulence, turbulent channel flow and periodic hill flow, of which the latter has been computed at two different Reynolds numbers of Re = 10,600 and 37,000. In comparison with available DNS, LES or experimental data, the LRN PANS model produces improved predictions over the standard PANS model, particularly in the near-wall region and for resolved turbulence statistics. Furthermore, the LRN PANS model gives similar or better results - at a reduced CPU time - as compared to the Dynamic Smagorinsky model.
Keywords:Low Reynolds number model   Near-wall behavior   Turbulent flow
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号