A PDAE Model for Interconnected Linear RLC Networks |
| |
Authors: | M. Günther |
| |
Abstract: | In electrical circuit simulation, a refined generalized network approach is used to describe secondary and parasitic effects of interconnected networks. Restricting our investigations to linear RLC circuits, this ansatz yields linear initial-boundary value problems of mixed partial-differential and differential-algebraic equations, so-called PDAE systems. If the network fulfils some topological conditions, this system is well-posed and has perturbation index 1 only: the solution of a slightly perturbed system does not depend on derivatives of the perturbations. As method-of-lines applications are often used to embed PDAE models into time-domain network analysis packages, it is reasonable to demand that the analytical properties of the approximate DAE system obtained after semidiscretization are consistent with the original PDAE system. Especially, both should show the same sensitivity with respect to initial and boundary data. We will learn, however, that semidiscretization may act like a deregularization of an index-1 PDAE model, if an inappropriate type of semidiscretization is used. |
| |
Keywords: | |
|
|