首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular rotation as a tool for exploring specific solute-solvent interactions.
Authors:G B Dutt
Institution:Radiation Chemistry & Chemical Dynamics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India. gbdutt@apsara.barc.ernet.in
Abstract:Solute-solvent interactions play an important role in determining the physicochemical properties of liquids and solutions. As a consequence, understanding these interactions has been one of the long-standing problems in physical chemistry. This Minireview describes our approach towards attaining this goal, which is to investigate rotational relaxation of a pair of closely related, medium-sized nondipolar solutes in a set of appropriately chosen solvents. Our studies indicate that solute-solvent hydrogen bonding significantly hinders solute rotation. We have also examined the role of solvent size both in the absence and presence of specific interactions and it has been observed that the size of the solvent has a bearing on solute rotation especially in the absence of specific interactions. Our results point to the fact that only strong solute-solvent hydrogen bonds have the ability to impede the rotation of the solute molecule because, in such a scenario, hydrogen-bonding dynamics and rotational dynamics transpire on comparable time scales. This aspect has been substantiated by measuring the reorientation times of the chosen solutes in solvents such as ethanol and trifluoroethanol, which have distinct hydrogen-bond donating and accepting abilities, and correlating them with solute-solvent interaction strengths. As an alternative treatment, it has been shown that specific interactions between the solute and the solvent can be modeled as dielectric friction with the extended charge distribution model. This approach is not unrealistic considering the fact that specific as well as non-specific interactions are electrostatic by nature and the differences between them are subtle.
Keywords:ab initio calculations  dielectric friction  hydrogen bonds  rotational relaxation  solute–solvent interactions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号