Abstract: | We report the development of an optical technique for noninvasive imaging of in vivo blood flow dynamics and tissue structures with high spatial resolution (2-10 microm) in biological systems. The technique is based on optical Doppler tomography (ODT), which combines Doppler velocimetry with optical coherence tomography to measure blood flow velocity at discrete spatial locations. The exceptionally high resolution of ODT permits noninvasive in vivo imaging of both blood microcirculation and tissue structures surrounding the vessel, which has significance for biomedical research and clinical applications. Tomographic imaging of in vivo blood flow velocity in the chick chorioallantoic membrane and in rodent skin is demonstrated. |