首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A novel concept for photovoltaic cells: clusters of titanium dioxide encapsulated within zeolites as photoactive semiconductors.
Authors:Mercedes Alvaro  Esther Carbonell  Pedro Atienzar  Hermenegildo García
Institution:Instituto de Tecnología Química CSIC-UPV and Departamento de Química UPV Avda. de los Naranjos s/n, 46022 Valencia, Spain.
Abstract:Discrete clusters of TiO(2) (of only a few titanium atoms) are prepared within the internal micropore space of zeolite Y (4.8 wt % Ti loading) and characterized by Raman spectroscopy (rutile- and anatase-like structures), electron microscopy combined with elemental analyses (coincident Si and Ti spatial distribution), and X-ray diffraction (minor zeolite crystallinity decrease). The parent TiO(2)@Y sample is modified either by adsorption of acid-organic compounds (benzoic and 4-aminobenzoic acids or catechol) or by nitrogen doping. After modification, the optical UV/Vis spectrum of the parent TiO(2)@Y (onset of the absorption band at wavelengths <300 nm and bandgap of 4.2 eV) changes, and the appearance of new bands expanding to the visible region is observed. In contrast to the inactive zeolite Y matrix, all the zeolite-encapsulated TiO(2) species exhibit a photovoltaic response. The influence of the I(2)/I(3) (-) concentration in the electrolyte solution on the temporal profile of the photovoltage clearly shows that I(2)/I(3) (-) is also a suitable carrier for the positive charge in zeolite-based photovoltaic devices. The photocurrent response and the efficiency of the photovoltaic cell based on zeolite-encapsulated TiO(2) materials depend on the nature of the organic modifier and on the N-doping. The most efficient photovoltaic cell is that based on N-doped TiO(2)@Y, which exhibits a V(OC) (voltage at open circuit) of 270 mV, an I(SC) of 5.8 muA (current at short circuit), and a fill factor (FF) of 0.4. Although these values are low compared to current dye-sensitized TiO(2) solar cells, our findings could open up a promise for a stimulating research on the photovoltaic activity of zeolite-based host-guest solids.
Keywords:nanoparticles  photovoltaic cells  semiconductors  titanium dioxide  zeolites
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号