首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Learning about calorimetry
Authors:B Wunderlich
Institution:(1) Department of Chemistry, The University of Tennessee, 37996-1600 Knoxville, TN, USA;(2) Chemistry and Analytical Sciences Division, Oak Ridge National Laboratory, 37831-6197 Oak Ridge, TN, USA
Abstract:Calorimetry deals with the energetics of atoms, molecules, and phases and can be used to gather experimental details about one of the two roots of our knowledge about matter. The other root is structural science. Both are understood from the microscopic to the macroscopic scale, but the effort to learn about calorimetry has lagged behind structural science. Although equilibrium thermodynamics is well known, one has learned in the past little about metastable and unstable states. Similarly, Dalton made early progress to describe phases as aggregates of molecules. The existence of macromolecules that consist of as many atoms as are needed to establish a phase have led, however, to confusion between colloids (collections of microphases) and macromolecules which may participate in several micro- or nanophases. This fact that macromolecules can be as large or larger than phases was first established by Staudinger as late as 1920. Both fields, calorimetry and macromolecular science, found many solutions for the understanding of metastable and unstable states. The learning of modern solutions to the problems of materials characterization by calorimetry is the topic of this paper.This work was financially supported by the Div. of Materials Res., NSF, Polymers Program, Grant # DMR 90-00520 and Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U. S. Department of Energy, under contract number DE-AC05-96OR22464. Support for instrumentation came from TA Instruments, Inc. Research support was also given by ICI Paints, and Toray Industries, Inc.
Keywords:calorimetry  glass transition  heat capacity  history  melting transition  nonequilibrium  temperature modulated calorimetry  TMC
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号