首页 | 本学科首页   官方微博 | 高级检索  
     

半水硫酸钙晶须的水化机理及稳定性调节
引用本文:高传慧,董亚洁,任秀,陈颖,王汇淄,胡尊富,王静,刘月涛. 半水硫酸钙晶须的水化机理及稳定性调节[J]. 无机化学学报, 2020, 36(5): 908-920
作者姓名:高传慧  董亚洁  任秀  陈颖  王汇淄  胡尊富  王静  刘月涛
作者单位:青岛科技大学化工学院生态化学工程国家重点实验室基地, 青岛 266042,青岛科技大学化工学院生态化学工程国家重点实验室基地, 青岛 266042,青岛科技大学化工学院生态化学工程国家重点实验室基地, 青岛 266042,青岛科技大学化工学院生态化学工程国家重点实验室基地, 青岛 266042,青岛科技大学化工学院生态化学工程国家重点实验室基地, 青岛 266042,临沂大学材料科学与工程学院, 临沂 276000,青岛科技大学化工学院生态化学工程国家重点实验室基地, 青岛 266042,青岛科技大学化工学院生态化学工程国家重点实验室基地, 青岛 266042
基金项目:国家自然科学基金(No.51872150),山东省自然科学基金(No.ZR2018M034),山东省生态化工协同创新中心人才基金(No.XTCXQN11)和生态化工国家重点实验室开放课题(No.STHG1804)资助项目。
摘    要:通过探讨半水硫酸钙晶须(HCSW)贮存过程在空气中形貌和晶形的变化,研究了半水硫酸钙晶须的水化机理,分析了不同处理方法对其稳定性的调节。研究发现,HCSW的水化是由晶须表面的-OH基团和Ca^2+活性位点以及HCSW存在的内部通道引起的,煅烧和二元醇改性均可提高硫酸钙晶须的耐水性。结果表明,煅烧后,半水硫酸钙晶须转化为无水可溶硫酸钙晶须和无水死烧硫酸钙晶须,易于水化的内部通道消失,耐水性增强;水热合成过程二元醇的加入,可利于醇羟基吸附在HCSW的(200)、(020)和(220)表面,阻止H2O分子中羟基在晶须表面的吸附,进而提高晶须的耐水性,当添加剂为三乙二醇(TEG)且浓度为18.8 mmol·L^-1时,HSCW在空气中耐水稳定性不小于7 d。

关 键 词:半水硫酸钙晶须  水化  煅烧  三乙二醇
收稿时间:2019-07-26
修稿时间:2020-03-05

Hydration Mechanism and Stability Regulation of Hemihydrate Calcium Sulfate Whiskers
GAO Chuan-Hui,DONG Ya-Jie,REN Xiu,CHEN Ying,WANG Hui-Zi,HU Zun-Fu,WANG Jing and LIU Yue-Tao. Hydration Mechanism and Stability Regulation of Hemihydrate Calcium Sulfate Whiskers[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(5): 908-920
Authors:GAO Chuan-Hui  DONG Ya-Jie  REN Xiu  CHEN Ying  WANG Hui-Zi  HU Zun-Fu  WANG Jing  LIU Yue-Tao
Affiliation:State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China,State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China,State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China,State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China,State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China,College of Materials Science and Engineering, Linyi University, Linyi, Shandong 276000, China,State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China and State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
Abstract:Hydration mechanism of hemihydrate calcium sulfate whisker (HCSW) was studied by discussing the change of morphology and crystal form in the storage process in the air, and the regulation of stability by different treatment methods was analyzed. It is found that the hydration of HCSW was caused by -OH group, Ca2+ active site at the surface and the internal channel inside of the whisker. Calcination and diol modification could improve the water resistance of calcium sulfate whisker. The experimental results indicate that after calcination, the hemihydrate calcium sulfate whisker are transformed into anhydrous soluble calcium sulfate whiskers and anhydrous dead calcium sulfate whiskers, the internal channels easy to hydration disappear, and the water resistance is enhanced. In the hydrothermal synthesis process, the addition of binary alcohol was beneficial to the adsorption of alcohol hydroxyl on the (200), (020) and (220) surfaces of HCSW, preventing the adsorption of hydroxyl in H2O molecules on the whisker surface, and further improving the water resistance of the whisker. When the additive was triethylene glycol (TEG) and the concentration was 18.8 mmol·L-1, the water resistance stability of HSCW in the air was not less than 7 days.
Keywords:hemihydrate calcium sulfate whisker  hydration  calcination  triethylene glycol
本文献已被 维普 等数据库收录!
点击此处可从《无机化学学报》浏览原始摘要信息
点击此处可从《无机化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号